首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14727篇
  免费   833篇
  国内免费   479篇
电工技术   199篇
综合类   687篇
化学工业   1619篇
金属工艺   4558篇
机械仪表   1644篇
建筑科学   451篇
矿业工程   367篇
能源动力   1076篇
轻工业   401篇
水利工程   54篇
石油天然气   721篇
武器工业   126篇
无线电   695篇
一般工业技术   2308篇
冶金工业   769篇
原子能技术   95篇
自动化技术   269篇
  2024年   31篇
  2023年   198篇
  2022年   332篇
  2021年   349篇
  2020年   366篇
  2019年   289篇
  2018年   283篇
  2017年   400篇
  2016年   358篇
  2015年   396篇
  2014年   765篇
  2013年   756篇
  2012年   815篇
  2011年   1072篇
  2010年   832篇
  2009年   976篇
  2008年   847篇
  2007年   936篇
  2006年   924篇
  2005年   753篇
  2004年   698篇
  2003年   687篇
  2002年   532篇
  2001年   498篇
  2000年   417篇
  1999年   314篇
  1998年   237篇
  1997年   200篇
  1996年   245篇
  1995年   144篇
  1994年   116篇
  1993年   73篇
  1992年   57篇
  1991年   37篇
  1990年   26篇
  1989年   25篇
  1988年   17篇
  1987年   11篇
  1986年   5篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
我公司使用的硫化机采用氮气定型,二次水硫化的工艺。由于特种工程胎胎体偏厚且大,成型机都比较大,生产过程中的帘布筒、钢丝、胎侧等部件都比较重且大。成型胎面使用胎面缠绕机缠绕,所以整个生产过程难度较大。特种工程胎硫化外胎的主要质量问题有:胎面皮泡、胎侧缺胶、胎侧泡、胎肩侧皮泡、子口内侧露线、子口缺胶、胎肚内缺(窝气)、胎肚露线、胎肚皮泡、胎肚串泡、子口支边、胎冠支边、子口鼓包、外胎花缺等。通过对特种工程胎硫化外胎质量缺陷原因分析,找到相应的解决措施,从而减少硫化外胎质量缺陷。  相似文献   
2.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
3.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
4.
Hydrogen adsorption performance and mechanism upon cycling of the upscaled Ni-doped hierarchical carbon scaffold (HCS) are investigated. Upon 22 hydrogen ad/desorption cycles (T = 25–50 °C and p (H2) = 1–50 bar), the upscaled Ni-doped HCS shows excellent cycling stability with gravimetric capacity of up to 1.51 wt % H2. This is due to mechanical stability of HCS and good distribution of Ni nanoparticles. Hydrogen adsorption mechanism of Ni-doped HCS upon cycling is experimentally and theoretically characterized. Besides dissociative adsorption onto the surface, hydrogen diffusion into the lattice structure of Ni is observed. The latter enhances with the number of ad/desorption cycles and alters the electron sharing mechanisms between Ni and H during adsorption.  相似文献   
5.
Sulfured doped carbon electrocatalysts is synthesized from the waste biomass Sargassum spp. Two doping procedures are examined to determine which is better for Oxygen Reduction Reaction (ORR); one by doping biocarbon obtained from the pyrolysis of the biomass and the second through a process of in situ doping in autoclave. The electrocatalyst are obtained from pyrolysis of the sample at 700 °C, which is finally characterized as a metal free electrocatalyst for the ORR. The electrocatalyst are characterized by BET surface area analysis, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and the electrochemical characterization is determined in 0.1 M KOH. The sample SSKPT-1 exhibits a promising electrocatalytic activity with an onset potential of 0.896 V vs RHE and a current density of 5 mA cm?2 (at 0.2 V vs. RHE) which could be partly attributed to its high BET surface area of 2755 m2 g?1.  相似文献   
6.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
7.
The 3D geometry of a hydrogen absorbing metal grain (Pd) is mimicked by a membrane made of the metal with identical properties, which is sealed on one side with a hydrogen semi-impermeable surface (Cu). The hydrogen loss through the sealed membrane surface is negligible, i.e., the hydrogen uptake measurement is that of a bulk material (Sieverts measurement), but the surface desorbs sufficient hydrogen to be detected by a mass spectrometer. With this, two independent spatial and temporal kinetic properties are defined which allow the reconstruction of the time dependent hydrogen distribution inside the membrane. As proof of concept, the mechanism of hydride formation in Pd is analyzed, corroborating the formation and growth of incoherent interfaces during hydrogen sorption.  相似文献   
8.
Water electrolysis is the most clean and high-efficiency technology for production of hydrogen, an ultimate clean energy in future. Highly efficient non-noble electrocatalysts for hydrogen evolution reaction (HER) are desirable for large scale production of hydrogen by water electrolysis. Especially, exposing as many active sites as possible is a vital way to improve activities of the catalysts. Herein, a series of new hydrangea like composite catalysts of ultrathin Mo2S3 nanosheets assembled uprightly and interlacedly on N, S-dual-doped graphitic biocarbon spheres were facilely prepared. The unique structure endowed the catalysts highly exposed edge active sites and prominently high activities for HER. Especially, the optimized catalyst Mo2S3/NSCS-50 exhibited as low as 106 mV of overpotential at 10 mA/cm2 (denoted as ?10). The catalyst also showed low Tafel slope of 53 mV/dec, low electron transfer resistance of 34 Ω and high stability evidenced by the result that the current density only attenuated 11.7% after 10 h i-t test. The catalyst has shown broad prospect for commercial application in water electrolysis.  相似文献   
9.
10.
Zinc cadmium sulfide (ZnxCd1?xS) is a good photocatalyst for hydrogen evolution reaction (HER), but an optimum x (xm) at which a maximum HER rate is reached varies from one report to another. In this work, we examine the effect of light wavelength, not only for the HER to H2 in the presence of Na2S and Na2SO3, but also for oxygen reduction reaction (ORR) without addition of any sacrifices. For the HER under a 365 and 420 nm LED lamp, the xm were 0.9 and 0.7, respectively. For the HER under a 330 and 395–515 nm cut-off xenon lamp, the xm were 0.7 and 0.5, respectively. For the ORR under a 420 nm cut-off halogen lamp, a maximum production of H2O2 was observed at x = 0.3. Furthermore, after 4% ZnCo2O4 loading, ZnxCd1?xS had an increased activity and stability, either for the HER or for the ORR. Through a (photo)electrochemical measurement, it is proposed that the photocatalytic activity of ZnxCd1?xS is determined by its light absorptivity and electron reactivity. The improved performance of n-type ZnxCd1?xS by p-type ZnCo2O4 is due to formation of a p-n junction, promoting the HER (ORR) on ZnxCd1?xS, and the sulfide (water) oxidation on ZnCo2O4. This work highlights that ZnxCd1-xS is a promising photocatalyst for H2 and H2O2 production, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号